Ontogenetic Shift in Efficacy of Antipredator Mechanisms in a Top Aquatic Predator, Anax junius (Odonata: Aeshnidae)

Gareth R. Hopkins*†, Brian G. Gall* & Edmund D. Brodie, Jr*

* Department of Biology, Utah State University, Logan, UT, USA
† The Ecology Center, Utah State University, Logan, UT, USA

Abstract

The ability of prey to escape predation often lies in the occurrence and efficacy of their predator avoidance and antipredator behaviors, which are often coupled with specialized morphology. How the use and efficacy of these behaviors change throughout ontogeny may be indicative of the vulnerability and ecological roles these animals experience throughout their lives. We examined the antipredator behavior of a large dragonfly nymph, Anax junius, from a historically fishless pond where these animals have traditionally been classified as top predators. These dragonfly nymphs displayed a series of distinct aggressive antipredator behaviors when grasped that involved stabbing with lateral and posterior spines and seizing with labial hooks. Larger (older) nymphs displayed these aggressive behaviors significantly more than smaller (younger) animals in simulated predation trials. During encounters with live larval salamander predators (Ambystoma tigrinum), all large nymphs, but only 12.5% of small nymphs successfully escaped predation attempts by the amphibians through the use of antipredator behavior. Large nymphs were also significantly more active than smaller nymphs in the presence of salamander larvae. Despite often being considered top predators in fishless ponds, our study demonstrates that their true role is more complex, depending on ontogeny and body size, and that effective antipredator behavior is likely necessary for survival in these systems.

Introduction

During a predatory encounter, prey experience a variety of situations that limit their ability to forage, reproduce, or otherwise contribute to enhancing fitness (Lima & Dill 1990). These interactions typically involve a series of stages that escalate in intensity, ultimately resulting in the death or escape of the prey (Endler 1986; Lima & Dill 1990). As the encounter escalates, the risk of injury to the prey increases and the probability of escape decreases.

Prey possess a host of behaviors that can be utilized during each stage of the predation event to decrease their risk of predation. These behaviors can be loosely classified as predator avoidance and antipredator behaviors (Brodie et al. 1991). Predator avoidance mechanisms are utilized before the prey enters the perceptual field of the predator and typically provide the greatest reduction in predation risk because the predatory encounter is deterred prior to the detection and identification of the prey as such. In contrast, antipredator behaviors are typically utilized after the organism has been detected and identified as prey and function to aid the prey’s escape after being captured.

While predator avoidance and antipredator behaviors are important to the survival of most animals, their occurrence and efficacy may change with ontogeny (Johnson 1968; Dixon & Baker 1988; Corbet 1999; Crumrine 2006). For example, there is some evidence that behavior in dragonfly nymphs may change with developmental stage and size...
(Johnson 1968; Dixon & Baker 1988; Corbet 1999; Crumrine 2006). This change may be indicative of the differing vulnerability and trophic role that some animals may experience throughout ontogeny.

In fishless aquatic ecosystems, predator–prey systems are dominated by large carnivorous invertebrates. These organisms have traditionally been classified as ‘top aquatic predators’ (Hopper 2001), and numerous studies have examined their ecology and behavior in this role (e.g., Hopper 2001; Crumrine 2006; Ferris & Rudolf 2007). For example, insects from the orders Coleoptera, Hemiptera, and Odonata possess voracious predatory species that can consume invertebrate or vertebrate prey larger than the predator itself (e.g., Brodie & Formanowicz 1983, 1987). These predators are particularly detrimental to small amphibians and fishes, which are often mobile, lack morphological or chemical defenses, and are present in high densities (Walker 1953; Duellman & Trueb 1986; Brodie & Formanowicz 1987). Moreover, these top predators are typically considered ‘safe’ in predator–prey interactions in these communities because of the absence of any large vertebrate predator (Hopper 2001).

Large, late-instar dragonfly (Odonata: Anisoptera) nymphs of the family Aeshnidae are an example of ‘top predators’ in fishless aquatic habitats (Walker 1953; Johnson 1991; Hopper 2001; Mikolajewski et al. 2006; Ferris & Rudolf 2007). The common green darner, Anax junius, is a large aeshnid, which, in its nymph stage, has traditionally been classified in this role (Crumrine 2006; Ferris & Rudolf 2007). In aquatic habitats, it is a known predator of a variety of organisms, ranging from invertebrates (Hopper 2001) to small fish (Walker 1953) and amphibian larvae (e.g., Walker 1953; Caldwell et al. 1980; Brodie & Formanowicz 1987; Skelly & Werner 1990; Petranka & Hayes 1998; Storfer & White 2004). Recent work (Crumrine 2010a,b) has described small, earlier-instar A. junius as cannibalistic prey of larger, late-instar nymphs. This age/size-structured intraspecific and intraguild predation can influence ecosystem dynamics and allow large and small dragonfly nymphs to fill niches as both predators and prey (Crumrine 2010a,b), respectively. Only two published studies (Godfrey 1980; Crumrine 2006), however, have examined Anax junius’ role as interspecific prey in aquatic systems. Crumrine (2006) examined A. junius’ predator avoidance behavior in response to fish. Godfrey (1980) reports that striped crayfish snakes (Regina alleni) tried to prey on A. junius, but were unable to swallow the nymphs because of their ability to seize the snakes with the labial hooks.

The purpose of our study was to examine the occurrence and efficacy of predator avoidance and antipredator behaviors of Anax junius from a fishless aquatic ecosystem, against both simulated and natural (larval salamander) predators. Although amphibian larvae have primarily been considered prey of large aeshnids (e.g., Walker 1953; Caldwell et al. 1980; Skelly & Werner 1990; Petranka & Hayes 1998; Storfer & White 2004), our study placed them in the opposite trophic position. While A. junius will readily eat young larval tiger salamanders (Ambystoma tigrinum) (Storfer & White 2004), large tiger salamander larvae are present at our study site and are likely predators to most invertebrates, including A. junius. To help address questions of ecological role switching and the importance of size and developmental stage, we examined large and small dragonfly nymphs to determine whether the occurrence and efficacy of this species’ antipredator behaviors changed with ontogeny.

Materials and Methods

Experimental Animals

All dragonfly nymphs (Anax junius) used in this study were collected from a pond near Preston, Idaho, USA. Dragonfly nymphs were housed in individual 10.5-cm-diameter, 4.0-cm-deep glass bowls, with a small rock (approximately 3 cm diameter) for perching, and 200 ml of filtered tap water. These bowls were placed in an environmental chamber (17°C) with a 12-h light:12-h dark cycle. Larval tiger salamanders (Ambystoma tigrinum) (mass ± SE = 16.2 ± 1.0 g; Snout-Vent Length ± SE = 7.2 ± 0.2 cm) were caught at the same pond as the dragonfly nymphs. Each tiger salamander was housed in a plastic container (34.9 cm × 20.3 cm × 12.7 cm) with 3.5 l of filtered tap water and an aerator and kept in the same environmental chamber as the dragonfly nymphs. Dragonfly nymphs and larval salamanders were fed blackworms (Lumbriculus variegatus) ad libitum for the approximately 2 wk that elapsed between field collection and start of experiments.

Anax junius ranged from 9–13th instars. Instar was determined through measurements of head width and total length (Calvert 1934; Crumrine 2006). Dragonfly nymphs were classified as ‘small’ in the 9–11th instars (total N = 10: 9th instar N = 2, 10th instar N = 6, 11th instar N = 2; head width ± SE = 5.6 ± 0.2 mm; total length ± SE = 24 ± 1 mm), whereas ‘large’ nymphs were in the 12th and 13th instars (total N = 12: 12th instar N = 5, 13th instar...
N = 7; \bar{x} head width \pm SE = 7.9 \pm 0.3 \text{ mm}; \bar{x} total length \pm SE = 38 \pm 1 \text{ mm}). A similar differentiation was used by Crumrine (2006, 2010a). Odonates in imminent stages of emergence decrease activity, and we did not use 13th-instar nymphs with swollen wing pads in our experiments (Mikolajewski & Johansson 2004).

Simulated Predation
A randomly chosen *A. junius* was placed into a plastic experimental arena (33 cm long \times 18.4 cm wide \times 10.8 cm high), with 0.8 cm of gravel, one small rock (diameter = 3.2 cm), and 2.0 l of filtered tap water. Animals were placed in the arena by pouring them from their holding container into the arena; animals were handled in this manner to prevent acclimation to the simulated predation event.

After a 5-min acclimation period, blunt forceps were brought toward the abdomen of the dragonfly at an angle of 45°, until the tip was next to, but not touching the animal. At this point, there was a 1- to 2-s pause to see whether the animal would flee. The forceps were then lightly brushed against the side of the animal, and a second observer noted whether *A. junius* swam away from the forceps. Lightly tapping on nymphs in this manner has been used to simulate a generic predation event (Hopper 2001). After the presence or absence of this behavior was noted, the nymph was grasped around the posterior portion of the thorax, so as to not interfere with the use of abdominal spines. The second observer recorded the sequence of antipredator behaviors exhibited by the nymph (see Results). When the animal was not immobile, these behaviors generally occurred immediately and all nymphs were grasped for <5 s. This procedure was repeated for each dragonfly nymph, and the total number of times a behavior was observed was summed for each age class. Dragonfly nymphs were tested only once and not reused for any other experiments. The occurrence of each antipredator behavior was compared among age classes using a two-tailed Fisher’s exact test (α = 0.05) in GraphPad Instat® (GraphPad Software Inc. 2003).

Natural Predators
Three days before the start of the experiment, the water in each salamander’s holding container was changed. To standardize hunger level, each animal was fed 1.3 g of blackworms (all blackworms were typically consumed within 1 h). Remaining food was removed and withheld for 72 h before the predation trials began. The water in each holding container was changed 24 h prior to the commencement of trials. Food was never withheld from dragonfly nymphs.

At the start of the predation trials, a salamander was randomly selected, the aerator was removed from the container, and white plastic blinds were set up around three sides of the container to reduce visual stimuli from adjacent test containers. A dragonfly nymph was placed into the salamander’s container by pouring it in without physically grasping it. The moment the nymph entered the water, a stopwatch was started, and detailed behavioral observations of the dragonfly and salamander were recorded. These included the time the dragonfly was active, the number of predatory attacks by the salamander, and the occurrence and efficacy of any antipredator behavior by nymphs. Lunges by a salamander without physical contact were distinguished from attacks that resulted in physical contact. Each trial lasted 20 min.

During the first set of trials, each salamander was randomly assigned either a small (9–11 instars, n = 5) or large (12–13 instars, n = 6) dragonfly nymph. At the conclusion of testing, all salamanders were fed bloodworms *ad libitum* for 2 d. The second set of trials was identical to the first except that the salamanders that were initially offered large dragonflies were now offered small, and vice versa, for a total of 11 predator–prey encounters per age class. Survival was treated as a binomial response variable and was compared between large and small nymphs using logistic regression (α = 0.05) in R (R Development Core Team 2008). The amount of time small vs. large *A. junius* nymphs spent immobile vs. active in the presence of larval salamander predators was compared using an unpaired *t*-test (α = 0.05) in GraphPad Instat® (GraphPad Software Inc. 2003).

Results

Morphological Adaptations
Anax junius possess three morphological features used to facilitate escape when attacked by a predator: lateral spines, posterior spines, and labial hooks. The lateral spines are rearward facing acute projections located on the lateral portions of abdominal segments 7, 8, and 9 (Fig. 1A). The posterior spines are lance-like projections composed of the epiproct and two paraprocts (Fig. 1B,C). A smaller posterior spine (modified cerci) is located immediately dorsal...
to each paraproct (Fig. 1B,C). The posterior spines are located on the posterior portion of abdominal segment 10. When grasped by a predator, the posterior spines are spread apart forming a triangle, increasing the effective area of the spines. The final morphological adaptation is typically used in food capture, but also functions as an antipredator mechanism. The labium in aeshnids is folded and can be projected forward to capture prey. Two hinged palpal lobes are located at the anterior end of the labium and terminate in movable labial hooks (Fig. 1D).

Antipredator Sequence

The antipredator mechanisms of *A. junius* to both simulated and natural predators consisted of a sequence of behavior that progressively increased in aggressive magnitude (Fig. 2). After being captured, these behaviors typically occurred in succession until either (1) a behavior succeeded in gaining release of the *A. junius* or (2) no single behavior resulted in release and all behaviors were utilized collectively.

When approached, or more often touched by a predator, *A. junius* often responded by ‘jetting’ away from the stimulus (Table 1, Fig. 2). *Anax* store water in a specialized chamber inside the rectum. By rapidly contracting the muscles surrounding the chamber, nymphs eject the water out the anus producing forward momentum at 10 cm/s (Mill & Pickard 1975).

After an *A. junius* was physically restrained by a predator (or grasped by forceps), three mechanisms were used to facilitate escape (Fig. 2). When grasped on the thorax, *A. junius* flexed the abdomen beginning with the first abdominal segment and wrapped the abdomen toward the predator. The three lateral spines on abdominal segments 7, 8, and 9 were then forced into the predator (Stage 1, Fig. 1A). If the lateral spines were unsuccessful in procuring release, the nymph immediately positioned the abdomen such that one or more of the posterior spines struck the predator (Stage 2, Fig. 1B,C). Although stage two often occurs immediately after stage one, nymphs may forgo striking with lateral spines and immediately utilize the posterior spines. *Anax junius* nymphs can rotate the abdomen 360° to strike a predator holding them by the thorax (Fig. 1C). If the previous two mechanisms failed to result in the release of the nymph, the head was positioned toward the predator. The nymph then struck by extending the labium and imbedding the labial hooks into the predator (Stage 3, Fig. 1D). The head is less flexible than the abdomen and many unsuccessful strikes may occur before contact with the predator. When a strike was successful, nymphs often continued grasping the predator until released.

If all three of these behaviors failed to facilitate release, the nymph repeatedly performed all three
behaviors until it was released or apparently reached exhaustion. There was typically little delay between the use of lateral and posterior spines. There may, however, be a short delay between the use of posterior spines and seizing with the labial hooks. If a nymph successfully seized the predator, but was not released, the other two mechanisms may be simultaneously and continuously utilized until released.

Simulated Predation

Anax junius nymphs exhibited all aspects of antipredator behavior when grasped with forceps, although there was a significant difference in the occurrence of each behavior among age classes (p = 0.02, Fisher’s exact test; Table 1). Nearly all (91.7%) large dragonfly nymphs performed the full sequence of aggressive antipredator behaviors (as described earlier), with one individual remaining immobile when grasped (Fig. 3). In contrast, only 40% of small nymphs performed the full sequence of antipredator behavior, with the majority remaining immobile (Fig. 3).

Table 2: Results of behavioral interactions between Anax junius nymphs (small = 9–11th instars; large = 12–13th instars) and larval tiger salamanders (Ambystoma tigrinum) in predation trials

<table>
<thead>
<tr>
<th></th>
<th>Small (n = 11)</th>
<th>% Small</th>
<th>Large (n = 11)</th>
<th>% Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunged at</td>
<td>11</td>
<td>100.0</td>
<td>9</td>
<td>81.8</td>
</tr>
<tr>
<td>Seized</td>
<td>8</td>
<td>72.7</td>
<td>8</td>
<td>72.7</td>
</tr>
<tr>
<td>Antipredator behavior when seized</td>
<td>7</td>
<td>87.5</td>
<td>8</td>
<td>100.0</td>
</tr>
<tr>
<td>Immobile when seized</td>
<td>1</td>
<td>12.5</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Survived when seized</td>
<td>1</td>
<td>12.5</td>
<td>8</td>
<td>100.0</td>
</tr>
<tr>
<td>Consumed</td>
<td>7</td>
<td>87.5</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>% Time immobile (± SE)</td>
<td>60.56 (± 7.6)</td>
<td></td>
<td>19.42 (± 7.4)</td>
<td></td>
</tr>
<tr>
<td>% Time moving (± SE)</td>
<td>39.44 (± 7.6)</td>
<td></td>
<td>80.58 (± 7.4)</td>
<td></td>
</tr>
</tbody>
</table>

Natural Predators

Nine of 11 large and all eleven small A. junius nymphs were lunged at by salamanders (Table 2, Fig. 2). All attacks by salamanders occurred when the nymphs were moving. When nymphs were lunged at but not grasped, all individuals jetted away. Of the dragonflies that were lunged at, sala-
manders physically grasped eight nymphs in each age class (Table 2, Fig. 2). All of the large A. junius nymphs and 87.5% of the small nymphs grasped by predators exhibited the antipredator response as described earlier (one small individual remained immobile when grasped; Table 2, Fig. 2).

One hundred percent of large dragonfly nymphs survived the predation trials, which is significantly more than small nymphs ($F_{21,20} = 14.4$, $p < 0.0001$). Salamanders consumed the majority of small nymphs after the initial attack. One small nymph survived the initial attack but was consumed on the second attack. While 36.6% of small nymphs survived the trials (Figs 2 and 4), most of these animals exhibited reduced mobility and were never physically grasped by salamanders. Small nymphs remained immobile significantly longer on average ($60.6 \pm 7.6\%$ of the 20-min trial) than large nymphs ($19.4 \pm 7.4\%$ of the 20-min trial) ($t_{20} = 3.22$, $p = 0.004$, Table 2, Fig. 2).

Discussion

Anax junius nymphs, a top predator in fishless aquatic environments (Crumrine 2006; Ferris & Rudolf 2007), exhibited distinct antipredator behaviors when threatened by both artificial (forceps) and natural (salamander) predators. Nymphs jetted away when approached. If seized by the predator, they rotated their abdomen to stab the predator with their lateral and posterior spines and seize it with their labial hooks. In addition, to avoid detection by predators, some nymphs reduced their activity and remained immobile in the presence of predators. While all of these strategies have been reported for a variety of odonate nymphs, most literature has focused on small dragonfly species and predator avoidance (Peckarsky 1982; Dixon & Baker 1988; Corbet 1999; Wohlfahrt et al. 2006; Ferris & Rudolf 2007). This approach has helped categorize larger dragonfly species as predators in fishless aquatic systems. Nevertheless, these ‘top predators’ possess and utilize a suite of antipredator behavior that can be extremely effective at deterring predation.

Every predator–prey encounter involves several basic steps: detection, attack, capture, subjugation, and consumption (Endler 1986; Lima & Dill 1990; Fig. 2). Potential prey can take actions to prevent predation at each of these stages, yet previous studies of predatory encounters with odonates have primarily focused on strategies used to avoid the detection and identification (stages 1–2), as opposed to antipredator behavior (stages 3–5) (dashed vs. solid lines in Fig. 2) (Peckarsky 1982; Dixon & Baker 1988; Corbet 1999; Wohlfahrt et al. 2006; Ferris & Rudolf 2007).
behind (Mikolajewski & Rolff 2004), nymphs to be effective only when attacked from found the backward-facing spines of odonate dators are present. In addition, where others have cally fishless ecosystem when large amphibian pre- note in light of our study, where the presence of jewski et al. 2006). These results are interesting to olajewski & Rolff 2004) and may be lost in fishless spines seems to be necessary for survival in a histori- nal Sciences and Engineering Research Council of ontogenetic niche shift from prey to predator in fishless aquatic environments. This ontogenetic niche shift has been demonstrated before in an intraguild setting with Anax junius (Crumrine 2010a,b), but not to our knowledge in any interspecific relationships. Inter- specific niche shifts have been shown to have pro- found ecological consequences with other organisms in piscivorous environments (e.g., Olson 1996), and our results open the door for future work on possible community-level effects in fishless habitats.

In historically fishless systems where large, late- instar dragonfly nymphs are thought of as ‘top pre- dators,’ these animals retain antipredator behavior and associated morphological adaptations that are effective at repulsing attackers during a predation event. The nature and efficacy of these behaviors change with ontogeny, allowing Anax junius to suc- ceed in environments where it plays a dynamic role as both predator and prey.

Acknowledgements
We thank Kip and Cristy Christen for access to their pond in Idaho; their friendship and generosity have made this research possible. We especially thank Ben- jamin Miller for sacrificing his finger for the advance- ment of science, proving A. junius really do bite. Scientific illustrator Bronwyn McIvor kindly provided the nymph illustration in Fig. 2. In addition, we thank the Utah State University Herpetology Group, S.K.M. Ernest, B. Rowland, L. Bain, and two anonymous reviewers for providing valuable comments on an earlier version of the manuscript. This research was supported by the Utah State University Depart- ment of Biology and by a scholarship from the Natu- ral Sciences and Engineering Research Council of

In large A. junius nymphs, the use of distinctive aggressive antipredator behaviors proved 100% effective against larval salamander predators, but this was certainly not the case for small nymphs. The majority (87.5%) of small nymphs displayed the aggressive antipredator behaviors when grasped by salamanders; however, only one individual (an 11th instar) survived the encounter by using these behav-
Canada (NSERC) to GRH. This research was approved by the Utah State University IACUC (#859).

Literature Cited

GraphPad Software Inc. 2003: GraphPad InStat®, version 3.0. La Jolla, California, USA.

Hopper, K. R. 2001: Flexible antipredator behavior in a dragonfly species that coexists with different predator types. Oikos 93, 470—476.

Peckarsky, B. L. 1982: Aquatic insect predator–prey relations. Bioscience 32, 261—266.

Walker, E. M. 1953: The Odonata of Canada and Alaska. Univ. of Toronto Press, Toronto, ON.