The role of the kisspeptin system in regulation of the reproductive endocrine axis and territorial behavior in male side-blotched lizards (Uta stansburiana)

Lorin Neuman-Lee a, Timothy Grieves b, Gareth R. Hopkins a,1, Susannah S. French a,c,⁎

a Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA
b Department of Biological Sciences, North Dakota State University, Fargo, ND 58106, USA
c The Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322-5205, USA

ARTICLE INFO

Article history:
Received 31 August 2016
Revised 23 November 2016
Accepted 12 December 2016
Available online 23 December 2016

Keywords:
Testosterone
Kisspeptin
Hypothalamic-pituitary-gonadal axis
Aggression

ABSTRACT

The neuropeptide kisspeptin and its receptor are essential for activation of the hypothalamic-pituitary-gonadal (HPG) axis and regulating reproduction. While the role of kisspeptin in regulating the HPG axis in mammals has been well established, little is known about the functional ability of kisspeptins to activate the HPG axis and associated behavior in non-mammalian species. Here we experimentally examined the effects of kisspeptin on downstream release of testosterone and associated aggression and display behaviors in the side-blotched lizard (Uta stansburiana). We found that exogenous treatment with kisspeptin resulted in an increase in circulating testosterone levels, castration blocked the kisspeptin-induced increase in testosterone, and testosterone levels in kisspeptin-treated animals were positively related to frequency of aggressive behaviors. This evidence provides a clear link between kisspeptin, testosterone, and aggressive behavior in lizards. Thus, it is likely that kisspeptin plays an important role more broadly in non-mammalian systems in the regulation of reproductive physiology and related behaviors.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Reproduction is controlled by a wide suite of endocrine and neural factors, which in turn heavily influence behavior (Moore and Lindsey, 1992; Rhen and Crews, 2002). The science of exploring these links between the neural, endocrine, and behavioral systems is an emerging field as we better understand how different genetic components of each system relate to each other. These links are especially poorly understood in non-mammalian organisms, despite similarities in the systems (Moore and Jessop, 2003). Understanding how these links function in organisms with different evolutionary histories can help us determine the basic underpinnings of physiological systems.

One such link in this neural, endocrine, and behavioral system has recently been identified. The neuropeptide kisspeptin and its receptor are essential for activation of the hypothalamic-pituitary-gonadal (HPG) axis in mammals (Lee et al., 2009); mutations in either the gene encoding kisspeptin, KissI, or its receptor KissIR (previously identified as the orphan receptor gene GPR54) leads to reproductive deficiencies in males and females (d'Anglemont de Tassigny et al., 2007; de Roux et al., 2003; Roa and Tena-Sempere, 2007; Seminara et al., 2003). Further, exogenous administration of kisspeptin to mammals activates the HPG axis leading to significant elevations of luteinizing hormone (LH) from the pituitary gland and downstream secretion of sex steroids in animals with capable gonads (Greives et al., 2007, 2011; Irlan et al., 2014; Saito et al., 2012). Activation of the kisspeptin system appears to be possible at the hypothalamus by releasing gonadotropin releasing hormone (GnRH; Tena-Sempere et al., 2012; Roa et al., 2008) or at the pituitary gland by directly stimulating the release of luteinizing hormone (LH; Luque et al., 2011; Tena-Sempere et al., 2012; Richard et al., 2009).

While the role of kisspeptin in regulating the HPG axis in mammals has been well established, little is known about the functional ability of kisspeptins to activate the HPG axis in non-mammalian species. This is despite the fact that comparative work has shown the presence and functionality of the kisspeptin system in fish, amphibians, and reptiles (reviewed in Tena-Sempere et al., 2012; Um et al., 2010), although it seems to have been lost in birds (Pasquier et al., 2014). Recent investigations of kisspeptin in non-mammalian vertebrates have identified
variants of the Kiss 1 and Kiss 1R, deemed Kiss 2 and Kiss 2R respectively, in animals including zebrafish (Danio rerio), African clawed frogs (Xenopus laevis) and grass lizards (Takydromus tachypholidoides) (Lee et al., 2009). Interestingly, this study revealed that grass lizards possess the gene for Kiss 2, but not Kiss 1. Synthetic zebrafish and Xenopus Kiss 2 peptide based on the Kiss 2 mRNA sequence binds to both Kiss 1R and Kiss 2R in vitro (Lee et al., 2009). An immunohistochemical examination of the lizard Anolis carolinensis using a human kisspeptin antiserum revealed the presence of kisspeptin-like immunoreactivity in the preoptic area (Dunham et al., 2009), an area important for activation of the HPG axis in lizards. Because the putative protein product of the Kiss 2 gene is able to activate Kiss 1R, and as the c-terminus of both Kiss 1 and Kiss 2 are highly conserved, these neurons identified with human Kiss 1 antisera likely represent cells with functional Kiss 2 peptide. The observation of kisspeptin expressed in areas of the hypothalamus associated with reproduction in Anolis lizards suggests a likely role for the kisspeptin system in regulating reproductive function in reptiles, similar to its actions in mammals. However, these studies did not measure testosterone production or other potential down-stream effects as a result of activation of these genes.

Much of the functional research into kisspeptin has focused on the neuropeptide’s effects on regulating puberty (Ball and Wade, 2013). However, the HPG axis controls a suite of hormones and down-stream effects, such as territorial behavior, that warrant further analysis. Activity of the HPG axis, particularly the secretion of the sex steroid testosterone, is closely linked with territorial and aggressive behaviors in a number of species (Hau, 2007; Wingfield et al., 1980), including in lizards (Kabelik et al., 2006; Moore, 1986; Weiss and Moore, 2004). Indeed, Grone et al. (2010) determined that cichlid fish that displayed stronger territoriality (higher social status) had a higher abundance of Kiss 1R mRNA expression in their brains. However, investigations of the role the HPG axis plays in regulating reproductive and territorial behavior has often relied on long-term release implants or multiple daily injections of the sex steroid testosterone (e.g. Adkins and Schlesinger, 1979; Moore, 1986; Zysling et al., 2006). The link between kisspeptin as an upstream regulator of behavior has not been well documented, especially in non-mammalian species.

Determining the physiological and genetic regulation of the HPG system cannot necessarily reveal how organisms will respond in a functional context. Therefore, it is critical to examine the consequences of this regulation on endpoint metrics, such as behavior (Ketterson and Nolan, 1992; Knapp, 2003; Neuman-Lee et al., 2015). Measuring reproductive and territorial behavior is especially valuable when attempting to understand the intricacies of HPG activation and control (Knapp, 2003). Quantifying behavior can be difficult in wild organisms, so it is important to select metrics that are serializable, well-described, and linked to the physiological metric (Graham et al., 2008; Greenberg, 1978). It is well-documented that animals may display behaviors differently in the laboratory and field, so idealy behaviors in both environments should be observed (Dickens and Bentley, 2014). Finally, other endocrine signaling axes may also be involved with HPG signaling and behavior, and thus, it is important to more comprehensively investigate endocrine and interactions with behavior. Especially significant is the hypothalamo-pituitary-adrenal (HPA) axis and downstream adrenal hormones (i.e., corticosterone), known to have important feedbacks and regulatory effects on reproduction and behavior in many species including reptiles (Moore and Jessop, 2003).

Utilizing the seasonally breeding and territorial side-blotched lizards (Uta stansburiana) as a model, we explicitly test the hypothesis that kisspeptins are able to activate the HPG axis in non-mammalian terrestrial vertebrates, by measuring secretion of the sex steroid testosterone in response to injection with kisspeptin. Additionally, we investigated whether injections of kisspeptin alters behavioral output in lizards over a very short time-scale (i.e. 30 min), and relate these behaviors with kisspeptin-induced activation of the HPG axis in both the laboratory and field. Uta stansburiana is similar to many lizards in that it displays robust territorial and reproductive behaviors that can be visually measured (Sinervo et al., 2000). Behavioral measures in lizards are easily quantifiable, especially in males, because male lizards have discrete territorial displays (e.g. push-ups) and defenses (e.g. charging) (Greenberg, 1978; Lovern et al., 2004; Sinervo et al., 2000). Taken together, this makes U. stansburiana an ideal model to investigate the effect of kisspeptin-induced HPG activation on behavior.

To determine the effects of kisspeptin on HPG axis activity in side-blotched lizards, we completed three experiments: 1) male lizards in the field were injected with either kisspeptin or a vehicle and aggressive and behavioral responses to kisspeptin injection were recorded, as well as the relationship between these behaviors and testosterone and corticosterone levels. 2) males in the lab were injected with either kisspeptin or a vehicle and behavioral and hormonal responses were recorded. 3) castrated and non-castrated males were injected with kisspeptin and testosterone concentrations were measured post-injection. We used these experiments together to determine whether kisspeptin-related behavioral effects were mediated via the HPG axis to alter testosterone concentrations or via other endocrine pathways, especially the HPA axis and corticosterone.

2. Materials and methods 2.1. Animals

All procedures were approved by the Utah State University Institutional Animal Care and Use Committee (IACUC protocol #1449). Male adult side-blotched lizards (Uta stansburiana) were collected within Dixie National Forest, Utah (Washington County), USA, via noosing in May 2010 (Experiment 1) and May 2011 (Experiment 2 and 3). All individuals were weighed and measured (snout-vent-length; SVL) upon capture.

2.2. Experiment 1: field trials

Side-blotched lizards (n = 20) were caught in the field via noosing, and given a 0.02 ml injection of either 50uM solution of kisspeptin (#048-56 KISS1, Phoenix Pharmaceuticals) in PBS buffer (n = 11) or PBS buffer alone (n = 9) intra-coelomically immediately upon capture. We used kisspeptin-10, a human variant, because it was the only commercially available variant. However, this variant is likely active in side-blotched lizards because it is active in other reptiles (Lee et al., 2009; Li et al., 2009), and the endogenous variant in this species has not been determined. We retrained lizards individually for 30 min in breathable, opaque cloth sacks in one location, after which they underwent a social interaction with a randomly selected stimulus male in a behavioral arena (plastic tub (55 cm × 43 cm × 32 cm) filled with “playground” sand and a single rock). The stimulus male was not injected with either kisspeptin or PBS at any time point. Encounters lasted 5 min and were scored manually and videotaped using a Canon HD Vixia HFS10 to additionally score after the trials. Video camera and researcher were positioned behind a blind such that entire arena was in video field of view. Video analysis was ultimately used to analyze all behavioral encounters, although both methods were highly related (P < 0.01, r² = 0.92). Behaviors measured on the treatment male included: latency to interaction with the stimulus male, pushups, full shows (i.e., lizards hold themselves up for extended duration), headbobs, charge (runs at other individual), and charge plus bite. All trials were completed between 09:10–11:59 am. Mean air temperature during trials was approximately 35 °C. After the 5 min behavioral trial we collected a blood sample from all animals retro-orbitally (within 1 min of capture). All blood was centrifuged and plasma was separated from red blood cells and stored at −20 °C until further analysis (described below). Each stimulus male was used in no more than two encounters and was rotated so as not to participate in multiple consecutive encounters. All animals were then released at their site of capture.
2.3. Experiment 2: laboratory trials

To measure these relationships in a more controlled environment, we measured both circulating sex steroid hormone and functionally related (i.e., behavioral) responses in male lizards provided either kisspeptin or vehicle injection in a laboratory setting. Male side-blotched lizards (n = 16, different individuals than in Experiment 1) were caught via noosing and brought back to Utah State University, Logan, UT, USA, where they were individually housed for one week prior to the experiment. Animals were housed individually in 26 × 28 × 50 cm polycarbonate terraria, in a room maintained on a 14L:10D photoperiod. A 25 W heat lamp was suspended over one end of the cage providing a thermogradient within the cage (27–40 °C) and enabling the animals to behaviorally thermoregulate.

On the day of experimentation, all animals were hand captured from their individual terraria and given a 0.02 ml injection (within 2 min of capture) of either a 50 μM solution of kisspeptin (#048-56, kiss-1, Phoenix Pharmaceuticals) in Phosphate Buffered Solution (PBS) buffer (n = 8) or PBS buffer (n = 7) alone intra-coelomically. Animals were then placed back into their terraria for 30 min, after which they were re-captured and underwent a social interaction with a stimulus male in a behavioral arena, as described above. The stimulus male was not injected with either kisspeptin or PBS at any time point and all stimulus males were significantly smaller and weighed less than injected males (P = 0.01) to ameliorate the risk that a larger stimulus male would alter the territorial behavior of injected males. All trials were completed between 09:10–11:59 am. Mean air temperature during trials was 27 °C and mean humidity was 20%. Encounters lasted 5 min with no acclimation period and were scored manually and videotaped as described above.

In addition to the behaviors scored in the field study, the video was analyzed using Noldus EthovisionXT® Software (Leesburg VA, USA). Using Ethovision, we determined the following parameters for each treatment lizard: total distance moved within the arena, mean distance from rock, total distance from rock, total duration on rock, latency to first time on rock, and mean velocity. We chose parameters utilizing the rock as lizards will make territorial displays on perches (Greenberg, 1978; Sinervo et al., 2000). Investigations into U. stansburiana behavior have elucidated alternative reproductive tactics depending upon color morph (Sinervo and Lively, 1996), but our work with this population shows no evidence of physiological differences between color morphs (Lucas and French, 2012) and color morph was ignored.

After the five minute behavioral trial we collected a blood sample from all animals retro-orbitally (within 3 min of capture) for analysis of testosterone. Blood was processed and plasma was stored as described above. Each stimulus male was used in no more than two encounters and was rotated so as not to participate in multiple consecutive encounters.

2.4. Experiment 3: castrations

Male side-blotch lizards (n = 15) from the laboratory experiment (described above) were either castrated or underwent a sham castration surgery. One week following surgery all animals were then given a kisspeptin challenge, where they were injected with 0.02 ml of a 50 μM solution of kisspeptin and bled 35 min later. Briefly, bilateral castration of adults was performed using techniques described by Moore (1987). Surgical procedures were performed with the animals completely unconscious and unresponsive to stimuli under anesthetic deep hypothermia, which is induced by packing the animals in crushed ice for 10–30 min prior to surgery. Briefly, the testes of the hypothermically anesthetized animal were exteriorized through a small ventral incision, a ligature was tied around the testis blood vessels, the testis was cut off above the ligature, the ends of the severed blood vessels were cauterized, and the incision was closed with sutures.

Sham surgeries followed a similar procedure except that no tissue was removed. Individuals with sham surgeries were returned to their site of capture after healing, while the castrated males were euthanized.

2.5. Plasma samples and radioimmunoassay

Circulating hormone levels were determined using a previously described and established radioimmunoassay (RIA) protocol (Neuman-Lee and French, 2014). Briefly, extractions were performed using a solution of 30% ethyl acetate: isooctane. Following extraction, using the same protocols as Moore (1986), samples were dried down, resuspended in PBS buffer, and assayed in duplicate for testosterone (Fitzgerald, WLI-T3003–01916) and corticosterone (Experiment 1; Fitzgerald 20–
CR45, Lot # P0012502). For each sample, we used an aliquot of the re-suspended fractions to measure individual recoveries following extraction and chromatography. Final sample concentration values were adjusted based on individual recoveries to account for any losses during extraction and chromatography procedures (intra-assay coefficient of variation = Testosterone 2010 = 4.9%, 2011 = 9.11%; Corticosterone 2010 = 10.35%).

2.6. Statistical analyses

Because the animals receiving the castrations had previously been used for the laboratory kisspeptin trials, we also performed an analysis of covariance (ANCOVA) on the testosterone concentrations after castration using the testosterone concentrations after the behavioral trial as a covariate to the castration/sham treatment. Because treatment was significant while the previous levels of testosterone or the interaction between treatment and testosterone were not (P > 0.05), we analyzed testosterone levels from the lizards using a t-test. For the other two experiments, we also compared the two treatment groups using a t-test. To compare treatment effects on behavior, additional t-tests were conducted. To examine the effect of testosterone levels on the behavioral parameters, we employed linear regressions. Testosterone, pushups, time to first interaction, total distance moved, and latency to first time on rock were log10-transformed to satisfy the assumption of normality and equal variances in all of the tests. One male was removed from the mean velocity analyses because his velocity could not be reliably calculated by the EthoVision software. There was no effect of time of bleeding on the metrics, so it was removed from all models (P > 0.2). All statistical analyses were performed using JMP-IN version 8.1 analyses software (SAS Institute Inc., Cary, NC) or R version 3.3.0 (R Development Core Team, 2016).

3. Results

3.1. Experiment 1: field trials

Kisspeptin treatment significantly affected circulating testosterone concentrations in the field (F = 7.67, df = 1, 19, P = 0.01); kisspeptin treated animals had significantly higher testosterone levels than did vehicle treated controls (Fig. 1A). However, there was no significant effect of kisspeptin treatment on any of the aggressive behaviors measured in the field (Table 1; all F < 1.30, all P > 0.27), nor was there a relationship between testosterone and any of the behavioral metrics (all P > 0.10).

There was also no significant effect of kisspeptin treatment on circulating corticosterone concentrations (F(1,19) = 1.64, P = 0.22). Males did not significantly differ in snout vent length (SVL, 51.8 ± 0.4 mm) or body mass (3.8 ± 0.2 g) across treatment groups (all F < 0.46, all P > 0.51).

3.2. Experiment 2: laboratory trials

Kisspeptin treatment significantly affected circulating testosterone levels in laboratory housed-males (F(1,15) = 5.02, P = 0.04); kisspeptin treated males had higher testosterone levels than did vehicle injected controls (Fig. 1B). There was no significant effect of kisspeptin treatment on aggressive behaviors (Table 1; all F < 2.50, all P > 0.14) or movement behaviors (Table 1; F = 3.1, all P > 0.10) directly. When examining animals in both treatment groups, testosterone levels were positively correlated to the number of headbobs (F(1,13) = 5.35, P = 0.04, r2 = 0.29). No other correlation was found in any of the variables (F > 2.88, all P > 0.11). When treatment groups were analyzed separately, testosterone was positively correlated to intensity of some aggressive behaviors in kisspeptin animals (head-bobs: F(1,7) = 5.52, P = 0.06, r2 = 0.49, Fig. 2A; push-ups: F(1,7) = 6.77, P = 0.04, r2 = 0.53, Fig. 2B; time to first interaction: F(1,6) = 5.27, P = 0.07, r2 = 0.51, Fig. 2C). However, all other parameters were not related to testosterone in kisspeptin-treated animals (F < 3.0, P > 0.14; full-show displays = insufficient data). There was no correlation between testosterone and aggressive behaviors in vehicle treated control animals (all F < 0.85, all P > 0.40).

3.3. Experiment 3: castration

Castration surgery effectively blocked testosterone release to kisspeptin challenge, whereby castrated animals had significantly lower testosterone levels than did animals that underwent sham castration surgeries (F(1,14) = 13.53, P < 0.01; Fig. 1C). For castrations and laboratory trials, males did not significantly differ in snout vent length (SVL, 51.7 ± 0.4 mm) or body mass (3.9 ± 0.1 g) across treatment groups (all F < 0.68, all P > 0.42).

4. Discussion

The data presented here demonstrate a functional kisspeptin system capable of activating the HPG axis in a non-mammalian vertebrate, the side-blotched lizard; injections of kisspeptin elevated levels of circulating testosterone. Further, we demonstrate that exogenous administration of kisspeptin alone did not significantly alter behaviors, when compared with control-injected animals. However, the amount of pushups was correlated with the elevated testosterone concentrations induced by kisspeptin in treated males.

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Field</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>Control</td>
<td>Control</td>
</tr>
<tr>
<td>N</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Latency to interaction (s)</td>
<td>175.0 ± 37.8</td>
<td>163.83 ± 37.38</td>
</tr>
<tr>
<td>Pushups (#)</td>
<td>9.89 ± 5.27</td>
<td>13.55 ± 5.85</td>
</tr>
<tr>
<td>Full shows (#)</td>
<td>0.11 ± 0.11</td>
<td>0.36 ± 0.28</td>
</tr>
<tr>
<td>Charges (0)</td>
<td>0.14 ± 0.36</td>
<td>0.13 ± 0.13</td>
</tr>
<tr>
<td>Headbobs (#)</td>
<td>2.78 ± 1.84</td>
<td>2.27 ± 1.07</td>
</tr>
<tr>
<td>Total distance moved within the arena (cm)</td>
<td>18417 ± 210.93</td>
<td>2011.99 ± 809</td>
</tr>
<tr>
<td>Total distance from rock (cm)</td>
<td>49.69 ± 1.46</td>
<td>53.20 ± 10.79</td>
</tr>
<tr>
<td>Total duration on rock (s)</td>
<td>76.63 ± 19.29</td>
<td>160.10 ± 38.34</td>
</tr>
<tr>
<td>Latency to first time on rock (s)</td>
<td>36.00 ± 15.85</td>
<td>28.44 ± 17.37</td>
</tr>
<tr>
<td>Mean velocity (cm/s)</td>
<td>2.67 ± 0.61</td>
<td>4.03 ± 0.75</td>
</tr>
</tbody>
</table>
Activation of the HPG axis was con
able kisspeptin, human kisspeptin-10, a product of the
vation of the HPG axis in response to injections of commercially avail-
labatory-housed side-blotched lizard (Uta stansburiana) males when presented with a
stimulus male. Behavioral metrics presented include A) Number of headbobs (Kisspeptin
male: \(R^2 = 0.49 \), Vehicle males: \(R^2 = 0.07 \), B) Number of pushups (Kisspeptin
male: \(R^2 = 0.53 \), Vehicle males: \(R^2 = 0.01 \), C) Time to first interactions (Kisspeptin
male: \(R^2 = -0.51 \), Vehicle males: \(R^2 = -0.05 \)) All values are presented as non-transformed.

In the current study, side-blotched lizards displayed significant acti-
vation of the HPG axis in response to injections of commercially avail-
able kisspeptin, human kisspeptin-10, a product of the KISS1 gene. Activation of the HPG axis was confirmed via a significant elevation in
circulating levels of the sex steroid testosterone. Castration abolished
this kisspeptin-induced elevation in testosterone, confirming that the
measured elevation in testosterone was due to the activation of the
HPG axis and was not elevated in response to release or conversion by
non-gonadal tissues (e.g. adrenals; Weiss and Moore, 2004).

While numerous studies in mammals have documented the effects of
the kisspeptin system on activation of the HPG axis, culminating in
testosterone secretion, few studies have investigated the functional ac-
tions of this peptide system on the reproductive axis in non-mammalian
vertebrates. Two studies of fishes have identified the ability of
kisspeptin to elevate LH levels (Chang et al., 2012; Yang et al., 2010),
however, neither of these studies investigated the downstream effects
by measuring sex steroid secretion, the final hormonal product follow-
ing activation of the HPG axis.

Our research reveals that a reptilian model does respond to exoge-
nous kisspeptin by activation of the HPG axis. Not only did we see a sig-
ificant increase in testosterone in kisspeptin-treated males in both the
field and the laboratory, but castrating males ameliorated the increase
in testosterone. While testosterone response to kisspeptin injection
was dampened in laboratory compared with field caught animals,
which has been documented in other lizard species (Weiss et al.,
2002), the pattern of a significant kisspeptin-induced elevation in tes-
tosterone levels compared with vehicle injected animals was still main-
tained. Interestingly, we found that there was a high level of variation in
testosterone response to kisspeptin injections, which is unsurprising
given the high amount of individual variation in testosterone levels in
this species (Sinervo et al., 2000). This could indicate at least two non-
mutually exclusive factors: 1) baseline levels of testosterone (prior
to injection or behavioral trials) were highly variable and/or 2) these indi-
viduals have varying sensitivity to kisspeptin. Regardless of the reason,
this variation in testosterone after kisspeptin injections revealed that
these elevations were correlated with the social behavior of pushups,
while there was no relationship observed between circulating testosterone
levels and behaviors in the vehicle-treated individuals.

We observed that individuals that displayed greater elevations in
testosterone in response to kisspeptin also displayed higher amounts
of the pushups territorial behavior. A higher concentration of testoste-
ronone correlated with an increased level of territorial behavior similarly
occurs in tree lizards (Urosaurus ornatus), where circulating testoste-
ronone levels were higher in individuals exhibiting higher frequency and
intensity of aggressive behaviors (Kabelik et al., 2006). Artificial eleva-
tions in testosterone also increased some, but not all, territorial aggres-
sive behaviors in non-breeding male mountain spiny lizards (Sceloporus
jarrovi) (Moore and Marler, 1987). Still other studies show that other
reproductive hormones, including progesterone might also be import-
ant for modulating aggressive display in lizard species (Weiss and
Moore, 2004). Interestingly, we did not find any relationship between
corticosterone and kisspeptin or any of the behavioral metrics. The rela-
tionship between corticosterone and behavior is clearly complicated
and sometimes contradictory: studies have shown a relationship be-
tween behavior and corticosterone levels (Moore and Mason, 2001;
Reedy et al., 2014; Thaker et al., 2009), no relationship between the
two metrics (Bliley and Woodley, 2012; Wack et al., 2013), or compli-
cated, context-dependent relationships (Breuner and Wingfield, 2000;
Neuman-Lee et al., 2015; Robert et al., 2009).

Previous unpublished work using a rodent model revealed that Sibe-
rian hamsters (Phodopus sungorus) injected with kisspeptin were no
more likely than vehicle injected controls to display aggressive behavior
using a resident-intruder paradigm (M. Scotti, T. Greives, G. Demas,
unpublished data). If kisspeptin acted directly on neural substrates with-
out the need for elevated testosterone levels, it would be expected
that a rapid and significant change in behaviors would have been ob-
served. However, in our study, no significant differences in behavior be-
tween kisspeptin- and vehicle-injected lizards were observed 35 min
following injection. This may indicate that a longer time period, with
prolonged exposure to elevated levels of testosterone, would be needed
to observe behavioral changes. This observation strongly suggests that
kisspeptin indirectly influences behavior via activation of the HPG
axis. To fully rule out the possibility of direct regulation of behavior by
central actions of kisspeptin would require behavioral testing following
castration and kisspeptin injection.

The current investigation utilized a commercially available
kisspeptin peptide derived from the mammalian Kiss1 gene product
(human kisspeptin-10). Recent analyses suggest that the ancestral
state of vertebrates is to have two genes that encode for kisspeptin,
Kiss1 and Kiss2 and that placental mammals have lost the more potent Kiss2 (Felip et al., 2009). It appears that other species, such as the grass lizard, have lost both Kiss1 and Kiss1R (receptor), but have retained Kiss2 and Kiss2R (Lee et al., 2009). In fish, products of both the Kiss1 and Kiss2 variants are able to potentiate activate the Kiss2R in vitro, as indicated by reporter gene assays (Lee et al., 2009; Li et al., 2009), suggesting that the conserved c-terminal sequence present in both Kiss1 and Kiss2 are capable of activating kisspeptin receptors present in lizards (Lee et al., 2009; Li et al., 2009). Further, immunohistochemical investigations in Anolis lizards using antibody against the Kiss1 peptide revealed peptide presence in areas of the hypothalamus known to be important for the regulation of the HPG axis (Dunham et al., 2009), further suggesting the results observed in the current investigation likely reflect a functional kisspeptin system in reptiles. However, it should be noted that the genome of our model species has not been investigated for the presence of either the Kiss1 or Kiss2 variant. Thus, although we do not yet know for certain which peptide variant may be acting in this species, the commonality of the c-terminus across taxa, immunohistochemical localization of kisspeptin in the hypothalamus, combined with evidence of bioactivity of both variants on the Kiss2R in fish indicates that our data, demonstrating a significant elevation of testosterone, reveals a role for the kisspeptin system in the regulation of the HPG axis in lizards.

In mammals, the kisspeptin system has been demonstrated to play a key role in regulating seasonal changes in reproductive physiology (Greives et al., 2008), metabolic control of reproduction (Castellano et al., 2009), and the development of reproductive capability (Ball and Wade, 2013). This study provides evidence that it plays a direct role in regulating reptilian reproductive physiology, and an indirect role in regulating territorial and reproductive behaviors. The current investigation, which clearly demonstrates a functional role for the kisspeptin system in regulation of the HPG axis, suggests that the kisspeptin system may also play a key role in regulating changes in seasonal breeding in non-mammals and reproductive development as well. Future experiments investigating seasonal and ontogenetic changes in expression of kisspeptin as well as sensitivity of the HPG axis in response to kisspeptin will help to further resolve the role of kisspeptin as a key regulator of reproduction in vertebrates.

Acknowledgements
Thank you to Leilani Lucas for her work on the field portion of this study and contributions to this manuscript. Thanks to Maria Goller for help with field work and behavioral analysis, and to Michael Bingham and Trevor Brown for help in the field. SSF was supported by Utah Start University start-up funding and Utah Agriculture Experiment Station project number UTA01104. TJG was supported by NSF IRFP #0852986.

References
Stress, captivity, and reproduction in a wild bird species. ILAR J. 45, 597–597.

